1.	Which statement(s) explain(s) why reaction rates increase as temperature increases?						
		1 The activation energy is less.					
		2 Collisions between molecules are more frequent.					
		3	A greater proportion of molecules have energy greater than the activation energy.				
	Α	,					
	В						
	C Only 2 and 3						
	D Only 1						
	You	ır ans	swer	[1]			

OCR (A) Chemistry A-Level - Reaction Rates

2. This question is about reaction rates.

Aqueous iron(III) ions, $Fe^{3+}(aq)$, react with aqueous iodide ions, $I^{-}(aq)$, as shown below.

$$2 \mathrm{Fe^{3+}(aq)} + 2 \mathrm{I^-(aq)} \, \rightarrow \, 2 \mathrm{Fe^{2+}(aq)} + \, \mathrm{I_2(aq)}$$

A student carries out three experiments to investigate how different concentrations of $Fe^{3+}(aq)$ and $I^{-}(aq)$ affect the initial rate of this reaction. The results are shown below.

Experiment	[Fe ³⁺ (aq)] /moldm ⁻³	[I ⁻ (aq)] /moldm ⁻³	Initial rate /moldm ⁻³ s ⁻¹
1	4.00 × 10 ⁻²	3.00 × 10 ⁻²	8.10 × 10 ⁻⁴
2	8.00 × 10 ⁻²	3.00 × 10 ⁻²	1.62 × 10 ⁻³
3	4.00 × 10 ⁻²	6.00 × 10 ⁻²	3.24 × 10 ⁻³

(a)*	Determine the rate constant and a possible two-step mechanism for this reaction that are consistent with these results. [6]
	Additional answer space if required

PhysicsAndMathsTutor.com

OCR (A) Chemistry A-Level - Reaction Rates

© OCR 2018 Turn over

(b) A student carries out an investigation to find the activation energy, E_a , and the pre-exponential factor, A, of a reaction.

The student determines the rate constant, k, at different temperatures, T. The student then plots a graph of $\ln k$ against 1/T as shown below.

OCR (A) Chemistry A-Level - Reaction Rates

(i)	Draw a best-fit straight line and calculate the activation energy, in J mol ⁻¹ . Give your answer to three significant figures.
	Show your working.
	activation energy, $E_a = +$
(ii)	Use the graph to calculate the value of the pre-exponential factor, A.
	Show your working.
	pre-exponential factor, <i>A</i> = [2]
	pro experiential ractor, /

3. The diagram represents a Boltzmann distribution curve of molecules at a given temperature.

Which statement for this Boltzmann distribution curve is correct at a higher temperature?

- A The peak increases in height and moves to the left.
- **B** The peak increases in height and moves to the right.
- C The peak decreases in height and moves to the left.
- **D** The peak decreases in height and moves to the right.

Your answer			[1]
Your answer			[1]